首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   140篇
  2021年   13篇
  2020年   11篇
  2019年   11篇
  2018年   16篇
  2017年   17篇
  2016年   33篇
  2015年   44篇
  2014年   61篇
  2013年   58篇
  2012年   82篇
  2011年   77篇
  2010年   60篇
  2009年   46篇
  2008年   70篇
  2007年   75篇
  2006年   68篇
  2005年   80篇
  2004年   84篇
  2003年   58篇
  2002年   57篇
  2001年   48篇
  2000年   65篇
  1999年   44篇
  1998年   22篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   15篇
  1993年   7篇
  1992年   28篇
  1991年   28篇
  1990年   22篇
  1989年   22篇
  1988年   18篇
  1987年   18篇
  1986年   12篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   3篇
  1973年   2篇
  1968年   2篇
  1965年   3篇
  1959年   2篇
排序方式: 共有1477条查询结果,搜索用时 22 毫秒
71.
Anethole has been known to have chemopreventive activities as a suppressor of the incidence and multiplicity of both invasive and noninvasive carcinomas. The goal of this study was to understand the anti-metastatic effect of anethole through C-X-C chemokine receptor type 4 (CXCR4)/tumor suppressor phosphatase and tensin homologue (PTEN) axis in DU145 prostate cancer cells. Anethole reduced both of the RNA level and the protein level of CXCR4 in a dose-dependent manner without cytotoxicity. Anethole also reduced the expression of CXCR4 and prolonged the expression of PTEN in DU145 prostate cancers. The phosphorylation of AKT and phosphatidylinositol-3kinase (PI3K) were decreased with anethole. The inhibition metastatic effect of anethole was arisen from down-regulating CXCR4 and up-regulating PTEN. Morphologically, anethole significantly inhibited the invasion of DU145 cell and down-regulated the activities of matrix-metalloproteinase (MMPs) in a dose-dependent manner. However, anethole didnot decrease the phosphorylation of PI3K and AKT while PTEN was silenced. Furthermore, the CXCR4 inhibition of anethole was not caused to proteasomal or lysosomal of CXCR4.  相似文献   
72.
Metabolic pathways used by Mycobacterium tuberculosis (Mtb) to establish and maintain infections are important for our understanding of pathogenesis and the development of new chemotherapies. To investigate the role of fructose-1,6-bisphosphate aldolase (FBA), we engineered an Mtb strain in which FBA levels were regulated by anhydrotetracycline. Depletion of FBA resulted in clearance of Mtb in both the acute and chronic phases of infection in vivo, and loss of viability in vitro when cultured on single carbon sources. Consistent with prior reports of Mtb''s ability to co-catabolize multiple carbon sources, this in vitro essentiality could be overcome when cultured on mixtures of glycolytic and gluconeogenic carbon sources, enabling generation of an fba knockout (Δfba). In vitro studies of Δfba however revealed that lack of FBA could only be compensated for by a specific balance of glucose and butyrate in which growth and metabolism of butyrate were determined by Mtb''s ability to co-catabolize glucose. These data thus not only evaluate FBA as a potential drug target in both replicating and persistent Mtb, but also expand our understanding of the multiplicity of in vitro conditions that define the essentiality of Mtb''s FBA in vivo.  相似文献   
73.
74.
75.
76.
The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (β/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr322 as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment.  相似文献   
77.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   
78.
The organistic constitution of genetic tumors probably causes the constituent cells to undergo genetic change from normal growth to abnormal, a relatively undifferentiated proliferation. We report here that the cyclin GTcyc gene, isolated from genetic tumors yielded notably intense bands while those from the parental DNA were less expressed. In a similar fashion, Northern blot analysis revealed that the genetic tumors expressed high levels of GTcyc relative to non-tumor hybrid tissues. Furthermore, RAPD data showed that the genetic relationships between tumor tissues and their parents did not present a highly corresponding match, suggesting that tumor growth may relate to the genetic modification or hybridization-related genome reorganization. Taken together, the cyclin gene performs a critical role in cell cycle progression, and this particular gene (GTcyc) may be a potential factor in tumor formations, resulting in gene alterations or gains, or changes to specific genomic regions.  相似文献   
79.
Hirudin is a potent thrombin inhibitor originally derived from the medicinal leech, Hirudo medicinalis. Owing to its high affinity and specificity for thrombin, hirudin has been intensively investigated for research and therapeutic purposes. The investigation of hirudin has contributed greatly to the understanding of the mode of action of thrombin and the clotting system. Hirudin and several hirudin analogues have also been demonstrated to have several advantages as a highly specific anticoagulant over the most widely used drug, heparin. Due to the great demand for hirudin in physicochemical and clinical studies, various recombinant systems have been developed, using bacteria, yeasts, and higher eukaryotes, to obtain the biologically active hirudin in significant quantities. After 10 years of clinical applications, two recombinant hirudins and a hirudin analogue have gained marketing approval from the United States Food and Drug Administration, for several applications. Clinical trials are currently ongoing for other treatments for thrombotic disease. As a consequence, it is conceivable that hirudin may expand its therapeutic utility over heparin in the near future.  相似文献   
80.
Improved technique for isolating RNA from tobacco tissues   总被引:3,自引:0,他引:3  
We have developed a much-improved method for isolating RNA from tobacco tissue. The novel component of the described RNA isolation method is the addition of lithium chloride to the extraction buffer. Following that, the RNA was homogenized with phenol/chloroform and precipitated in ethanol. This isolation technique provided highly reproducible and good quality RNA within 2 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号